Secrets of the Soil: Part 1

This post was getting way too long, so I decided to cut it in half. Part 1 introduces general soil chemistry and biology and then describes some of the specific practices we use to build our soil. Part 2 will take a more detailed look at the soil at Lilliputopia by using different tools and resources.

Fungus and other microbes are the foundation for healthy living soils.

You are what you eat, and everything you eat was produced by the living soil. One cup of healthy soil contains billions of microbes, not to mention a myriad of other creatures, such as earthworms, arthropods, nematodes and mollusks. Soil may look like a small and insignificant fraction of the farm, but it comprises an immense and foundational ecosystem that we actually know very little about; we are often completely unaware of the complex and alien biology that ultimately sustains us. Luckily, even without a complete understanding, we can learn from nature to implement nourishing and restorative practices to grow our soil.

A history of destruction and imbalance

Conventional agriculture has attributed very little value to the soil due to the predominant belief that plants only require predefined chemistry, primarily in the form of NPK (nitrogen, phosphorus, and potassium), called macronutrients. In my opinion, this reductionist (and naive) perspective has been very detrimental to the overall state of the world's farmland. Not only has the rich topsoil, which was once ubiquitous and fertile, been almost completely decimated, but the pervasive application of chemicals to the soil has destroyed and polluted land, water, and air.

Chemicals create widespread imbalances in the soil biology, destroying beneficial creatures such as these worms. Worms aerate and fertilize soil.

Consider nitrogen (N), the single most important fertilizer for growing plants (or so they say). Nitrogen is an essential component in amino acids, which chain together to make proteins and are required in all cells. Since Fritz Haber won the Nobel Prize in 1918 for inventing artificial nitrogen fixation (which was first used for explosives in WWI and which we have become entirely dependent on for agriculture), the world's population has skyrocketed. Nitrogen fixation is the process by which atmospheric nitrogen gas, which is practically inert, is converted to ammonia, a biologically usable form. It has been estimated that the majority of the nitrogen within our tissues is derived from this process; whereas little over a hundred years ago, all of the fixed nitrogen in the world came from natural sources such as nitrogen-fixing plants and, to a lesser extent, lightning strikes. Sadly, approximately 50% of nitrogen (and most soluble fertilizers) that is applied to soils is simply washed away, polluting the waterways and creating ideal conditions for harmful and pathogenic algal blooms.